穿越:2014_第136章 现象级小游戏的诞生 首页

字体:      护眼 关灯

上一页 目录 下一页

   第136章 现象级小游戏的诞生 (第6/9页)

将来可以轻松破局!)

    而林灰打算怎样破局呢?

    生成式摘要算法本质上是深度学习发展的产物。

    而现在这个时间节点。

    却只有神经网路识别。

    没有真正意义上的深度学习。

    林灰很清楚打开真正的深度学习的钥匙是什么?

    ——残差神经网路。

    (这个概念是前世在2015年由Microsoft某研发团队提出的。

    残差神经网络是一种残差学习框架来减轻网络训练。

    和以往的神经网络架构不同。

    残差神经网路的架构将层变为学习关于层输入的残差函数,而不是学习未参考的函数。

    经验证据证明这些残差网络很容易优化,并可以显著增加深度来提高准确性。

    林灰记得,前世的研究小组在ImageNet数据集上评估了深度高达152层的残差网络。

    这个152层的深度要比现在这个时空主流的深8倍。

    但是就复杂度而言,残差网络却具有较低的复杂度。

    深度网络自然地将低/中/高级特征和分类器以端到端多层方式进行集成。

    特征的“级别”可以通过堆叠层的数量来丰富。

    可以说残差神经网路具有碾压般的优势)

    残差神经网路这个东西在外人眼中可能是晦涩的术语。

    但其实这是开启未来的钥匙。

    而其就掌握在林灰的手中。

    林灰这种比喻丝毫不过分。

    只有在残差神经网络出现之后,深度学习这个概念才真正出现。

    具体
加入书签 我的书架

上一页 目录 下一页